DL Enviroment Configing

author: p0iL(blog: poilzero.cn)
from: http://poilzero.cn/admin/write-post.php?cid=340
所有网络地址等信息均为模拟,仅供教学,无实际实体主机

Conda Enviroment

update

conda upgrade conda
conda upgrade anaconda

pip install --upgrade pip --proxy=http://localhost:7890

conda jupyter add env

ipykernel
python -m ipykernel install --name env_name

TF1 envriment

tf1最高支持python3.7

tf1最高版本1.15.0对应keras==2.2.5

conda create -n tf1 python=3.7
conda install tensorflow==1.15.0
pip install keras==2.2.5 pandas scikit-learn gensim matplotlib --proxy=http://localhost:7890

Ubuntu Network

此处proxy_addr是102的地址,是交换机连接到192.168.9.1的

地址已经固定分配为192.168.9.186,不会变化

2)

仅有此处会发生变化!外网网关

命令:route add 0.0.0.0 mask 0.0.0.0 192.168.171.106

双网卡(外网+内网)配置

????

未解决的问题:必须用system proxy才能联网

127.0.0.1:7890连不上

????

网关:192.168.9.1

102网线IP:192.168.9.186

Windows:配置多网卡路由表(规则)_windows 添加路由表 规则-CSDN博客

2025-10-09T08:29:06.png

其他命令
命令:route host
作用:打印host链路表
命令:route print -4
作用:打印路由表的后四行

1)
命令:route delete 0.0.0.0
作用:将默认路由规则清空。

2)
################# 仅有此处会发生变化!外网网关
目标:          0.0.0.0          0.0.0.0    192.168.25.92   192.168.25.235     36
命令:route add 0.0.0.0 mask 0.0.0.0 192.168.25.92
作用:
添加默认路由规则0.0.0.0/0
指向【外网网关】192.168.25.92 (根据网关自动匹配接入点192.168.25.235)

3)
目标:      192.168.9.0    255.255.255.0            在链路上     192.168.9.186     26
命令:route add 192.168.9.0 mask 255.255.255.0 192.168.9.186
作用:
添加路由规则192.168.9.0/24
指定【内网接入点】192.168.9.186(由于未指定网关192.168.9.1,且在同一子网,网关采用链路模式)
指定接入点使用网线(if 19)【访问内网】
route delete 0.0.0.0
route add 0.0.0.0 mask 0.0.0.0 192.168.95.47
route delete 192.168.9.0
route add 192.168.9.0 mask 255.255.255.0 192.168.9.186

目标:          0.0.0.0          0.0.0.0    【192.168.25.92】   192.168.25.235     36
目标:      192.168.9.0    255.255.255.0            在链路上   【192.168.9.186】    26

网关:在链路上/路由:

为什么选择“在链路上”
直接访问:目标主机192.168.9.103在同一子网内,可以直接通过交换机访问。
效率:不需要通过路由器,减少了网络延迟和路由开销。
简化配置:使用“在链路上”可以简化路由表配置,避免不必要的复杂性。
不需要指定192.168.9.1
特定主机路由:如果您指定192.168.9.1作为下一跳地址,这通常用于指向一个路由器或网关,而不是直接连接的主机。
冗余:在同一个子网内,指定特定主机路由通常是不必要的,因为“在链路上”已经足够。

bash:curl,wget,pip

export 重复引入变量会覆写,而不会额外添加多个
export proxy_addr="192.168.9.186:7890"
export http_proxy="http://$proxy_addr"
export https_proxy="http://$proxy_addr"
export ftp_proxy="socket5://$proxy_addr"
# refresh the config
source ~/.bashrc
# delete
unset http_proxy
unset https_proxy
unset ftp_proxy

APT

sudo vi /etc/apt/apt.conf.d/proxy.conf
Acquire {
  HTTP::proxy "http://192.168.9.186:7890";
  HTTPS::proxy "http://192.168.9.186:7890";
  FTP::proxy "http://192.168.9.186:7890";
}

Git

#设置代理,此处为案例演示
git config --global http.proxy http://proxy.xxx.com:8080
#查看代理
git config --global http.proxy
#删除代理
git config --global --unset http.proxy
git config --global --unset https.proxy
git config --global http.proxy http://192.168.9.186:7890
git config --global http.proxy http://192.168.9.186:7890

conda

配置文件创建

conda config

配置文件位置

  • ubuntu:

    • ~/.condarc
    • /home/poil/.condarc
  • windows:

    • C:/Users/15426/.condarc

配置文件修改

源来自于清华镜像站:https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/

channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

channel_priority: strict
proxy_servers:
  http: http://localhost:7890
  https: http://localhost:7890
ssl_verify: false
channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

channel_priority: strict
proxy_servers:
  http: http://192.168.9.186:7890
  https: http://192.168.9.186:7890
ssl_verify: false

envs_dirs:
  - /mnt/data/anaconda3/envs
pkgs_dirs:
  - /mnt/data/anconda3/pkgs





channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
show_channel_urls: true
channel_priority: flexible
envs_dirs:
  - /mnt/data/anaconda3/envs
pkgs_dirs:
  - /mnt/data/anconda3/pkgs
proxy_servers:
  http: http://192.168.9.186:7890
  https: http://192.168.9.186:7890
ssl_verify: false

pip-bash(暂时不用)

Ubuntu bash设置后就不需要使用该指令了
--proxy=http://localhost:7890

Docker

https://cloud.tencent.com/developer/article/1806455

docker run&&pull

sudo vi /etc/systemd/system/docker.service.d/proxy.conf
[Service]
Environment="HTTP_PROXY=http://192.168.9.186:7890/"
Environment="HTTPS_PROXY=http://192.168.9.186:7890/"
Environment="NO_PROXY=localhost,127.0.0.1,.baidu.com"

docker container(all)

sudo vi ~/.docker/config.json
{
 "proxies":
 {
   "default":
   {
     "httpProxy": "http://192.168.9.186:7890/",
     "httpsProxy": "http://192.168.9.186:7890/",
     "noProxy": "localhost,127.0.0.1,.baidu.com"
   }
 }
}

重启daemon和docker

sudo systemctl daemon-reload
sudo systemctl restart docker

nvidia-docker

installing https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installing-with-apt

installing gpgkey

curl -s -L https://nvidia.github.io/nvidia-container-runtime/gpgkey | \
  sudo apt-key add -
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-container-runtime/$distribution/nvidia-container-runtime.list | \
  sudo tee /etc/apt/sources.list.d/nvidia-container-runtime.list
sudo apt-get update

installing nvidia-container-runtime

sudo apt-get install nvidia-container-runtime -y

config docker

/etc/docker/daemon.json

{
  "runtimes": {
    "nvidia": {
      "path": "nvidia-container-runtime",
      "runtimeArgs": []
    }
  },
  "default-runtime": "nvidia",
  "registry-mirrors":["https://dockerproxy.cn"]
}

restart docker

sudo systemctl restart docker
Last modification:October 9, 2025
如果觉得我的文章对你有用,请随意赞赏。咖啡(12RMB)进度+100%,一块巧克力(1RMB)进度+6%。
(赞赏请备注你的名称哦!后台记录中来自理工小菜狗)