DL Enviroment Configing
author: p0iL(blog: poilzero.cn)
from: http://poilzero.cn/admin/write-post.php?cid=340
所有网络地址等信息均为模拟,仅供教学,无实际实体主机
Conda Enviroment
update
conda upgrade conda
conda upgrade anaconda
pip install --upgrade pip --proxy=http://localhost:7890conda jupyter add env
ipykernel
python -m ipykernel install --name env_nameTF1 envriment
tf1最高支持python3.7
tf1最高版本1.15.0对应keras==2.2.5
conda create -n tf1 python=3.7
conda install tensorflow==1.15.0
pip install keras==2.2.5 pandas scikit-learn gensim matplotlib --proxy=http://localhost:7890Ubuntu Network
此处proxy_addr是102的地址,是交换机连接到192.168.9.1的
地址已经固定分配为192.168.9.186,不会变化
2)
仅有此处会发生变化!外网网关
命令:route add 0.0.0.0 mask 0.0.0.0 192.168.171.106
双网卡(外网+内网)配置
????
未解决的问题:必须用system proxy才能联网
127.0.0.1:7890连不上
????
网关:192.168.9.1
102网线IP:192.168.9.186
Windows:配置多网卡路由表(规则)_windows 添加路由表 规则-CSDN博客
其他命令 命令:route host 作用:打印host链路表 命令:route print -4 作用:打印路由表的后四行 1) 命令:route delete 0.0.0.0 作用:将默认路由规则清空。 2) ################# 仅有此处会发生变化!外网网关 目标: 0.0.0.0 0.0.0.0 192.168.25.92 192.168.25.235 36 命令:route add 0.0.0.0 mask 0.0.0.0 192.168.25.92 作用: 添加默认路由规则0.0.0.0/0 指向【外网网关】192.168.25.92 (根据网关自动匹配接入点192.168.25.235) 3) 目标: 192.168.9.0 255.255.255.0 在链路上 192.168.9.186 26 命令:route add 192.168.9.0 mask 255.255.255.0 192.168.9.186 作用: 添加路由规则192.168.9.0/24 指定【内网接入点】192.168.9.186(由于未指定网关192.168.9.1,且在同一子网,网关采用链路模式) 指定接入点使用网线(if 19)【访问内网】
route delete 0.0.0.0
route add 0.0.0.0 mask 0.0.0.0 192.168.95.47
route delete 192.168.9.0
route add 192.168.9.0 mask 255.255.255.0 192.168.9.186
目标: 0.0.0.0 0.0.0.0 【192.168.25.92】 192.168.25.235 36
目标: 192.168.9.0 255.255.255.0 在链路上 【192.168.9.186】 26网关:在链路上/路由:
为什么选择“在链路上”
直接访问:目标主机192.168.9.103在同一子网内,可以直接通过交换机访问。
效率:不需要通过路由器,减少了网络延迟和路由开销。
简化配置:使用“在链路上”可以简化路由表配置,避免不必要的复杂性。
不需要指定192.168.9.1
特定主机路由:如果您指定192.168.9.1作为下一跳地址,这通常用于指向一个路由器或网关,而不是直接连接的主机。
冗余:在同一个子网内,指定特定主机路由通常是不必要的,因为“在链路上”已经足够。
bash:curl,wget,pip
export 重复引入变量会覆写,而不会额外添加多个
export proxy_addr="192.168.9.186:7890"
export http_proxy="http://$proxy_addr"
export https_proxy="http://$proxy_addr"
export ftp_proxy="socket5://$proxy_addr"
# refresh the config
source ~/.bashrc# delete
unset http_proxy
unset https_proxy
unset ftp_proxyAPT
sudo vi /etc/apt/apt.conf.d/proxy.conf
Acquire {
HTTP::proxy "http://192.168.9.186:7890";
HTTPS::proxy "http://192.168.9.186:7890";
FTP::proxy "http://192.168.9.186:7890";
}Git
#设置代理,此处为案例演示 git config --global http.proxy http://proxy.xxx.com:8080 #查看代理 git config --global http.proxy #删除代理 git config --global --unset http.proxy git config --global --unset https.proxy
git config --global http.proxy http://192.168.9.186:7890
git config --global http.proxy http://192.168.9.186:7890conda
配置文件创建
conda config
配置文件位置
ubuntu:
~/.condarc/home/poil/.condarc
windows:
C:/Users/15426/.condarc
配置文件修改
源来自于清华镜像站:https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
channels: - defaults show_channel_urls: true default_channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 custom_channels: conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud channel_priority: strict proxy_servers: http: http://localhost:7890 https: http://localhost:7890 ssl_verify: false
channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
channel_priority: strict
proxy_servers:
http: http://192.168.9.186:7890
https: http://192.168.9.186:7890
ssl_verify: false
envs_dirs:
- /mnt/data/anaconda3/envs
pkgs_dirs:
- /mnt/data/anconda3/pkgs
channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
show_channel_urls: true
channel_priority: flexible
envs_dirs:
- /mnt/data/anaconda3/envs
pkgs_dirs:
- /mnt/data/anconda3/pkgs
proxy_servers:
http: http://192.168.9.186:7890
https: http://192.168.9.186:7890
ssl_verify: falsepip-bash(暂时不用)
Ubuntu bash设置后就不需要使用该指令了
--proxy=http://localhost:7890Docker
https://cloud.tencent.com/developer/article/1806455
docker run&&pull
sudo vi /etc/systemd/system/docker.service.d/proxy.conf[Service]
Environment="HTTP_PROXY=http://192.168.9.186:7890/"
Environment="HTTPS_PROXY=http://192.168.9.186:7890/"
Environment="NO_PROXY=localhost,127.0.0.1,.baidu.com"docker container(all)
sudo vi ~/.docker/config.json{
"proxies":
{
"default":
{
"httpProxy": "http://192.168.9.186:7890/",
"httpsProxy": "http://192.168.9.186:7890/",
"noProxy": "localhost,127.0.0.1,.baidu.com"
}
}
}重启daemon和docker
sudo systemctl daemon-reload
sudo systemctl restart dockernvidia-docker
installing https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installing-with-apt
installing gpgkey
curl -s -L https://nvidia.github.io/nvidia-container-runtime/gpgkey | \
sudo apt-key add -
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-container-runtime/$distribution/nvidia-container-runtime.list | \
sudo tee /etc/apt/sources.list.d/nvidia-container-runtime.list
sudo apt-get updateinstalling nvidia-container-runtime
sudo apt-get install nvidia-container-runtime -yconfig docker
/etc/docker/daemon.json
{
"runtimes": {
"nvidia": {
"path": "nvidia-container-runtime",
"runtimeArgs": []
}
},
"default-runtime": "nvidia",
"registry-mirrors":["https://dockerproxy.cn"]
}restart docker
sudo systemctl restart docker